THE STRUCTURE OF Simp<∞(A) FOR FINITELY GENERATED k-ALGEBRAS A
نویسندگان
چکیده
be the set of (iso-classes of) finite dimensional simple right A-modules. An ndimensional simple A-module V ∈ Simpn(A) defines a surjectiv homomorphism of k-algebras, ρ : A → Endk(V ), the kernel of which is a two-sided maximal ideal mV , of A. Let Max≤∞ be the set of all such maximal ideals of A, for n ≥ 1. To exclude some strange and for our purposes non-interesting cases, we shall assume that A has the following property:
منابع مشابه
The Quasi-morphic Property of Group
A group is called morphic if for each normal endomorphism α in end(G),there exists β such that ker(α)= Gβ and Gα= ker(β). In this paper, we consider the case that there exist normal endomorphisms β and γ such that ker(α)= Gβ and Gα = ker(γ). We call G quasi-morphic, if this happens for any normal endomorphism α in end(G). We get the following results: G is quasi-morphic if and only if, for any ...
متن کاملLattice of full soft Lie algebra
In this paper, we study the relation between the soft sets and soft Lie algebras with the lattice theory. We introduce the concepts of the lattice of soft sets, full soft sets and soft Lie algebras and next, we verify some properties of them. We prove that the lattice of the soft sets on a fixed parameter set is isomorphic to the power set of a ...
متن کاملFinitely Generated Annihilating-Ideal Graph of Commutative Rings
Let $R$ be a commutative ring and $mathbb{A}(R)$ be the set of all ideals with non-zero annihilators. Assume that $mathbb{A}^*(R)=mathbb{A}(R)diagdown {0}$ and $mathbb{F}(R)$ denote the set of all finitely generated ideals of $R$. In this paper, we introduce and investigate the {it finitely generated subgraph} of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_F(R)$. It is the (undi...
متن کاملGelfand-Kirillov Dimension of Commutative Subalgebras of Simple Infinite Dimensional Algebras and their Quotient Division Algebras
Throughout this paper, K is a field, a module M over an algebra A means a left module denoted AM , ⊗ = ⊗K . In contrast to the finite dimensional case, there is no general theory of central simple infinite dimensional algebras. In some sense, structure of simple finite dimensional algebras is ‘determined’ by their maximal commutative subalgebras (subfields)[see [18] for example]. Whether this s...
متن کاملNoncommutative Spherical Tight Frames in finitely generated Hilbert C*-modules
Let A be a fixed C*-algebra. In an arbitrary finitely generated projective A-module V ⊆ An, a spherical tight A-frame is a set of of k, k > n, elements f1, . . . , fk such that the associated matrix F = [f1, . . . , fk] up-to a constant multiple is a partial isometry of the Hilbert structure on the projective finitely generated A-module V . The space FA k,n of all such A-frames form a C*-algebr...
متن کامل